45 research outputs found

    Brief Announcement: Barrier-1 Reachability for Thermodynamic Binding Networks Is PSPACE-Complete

    Get PDF
    Chemical and molecular systems exist in a world between kinetics and thermodynamics. Engineers of such systems often design them to perform computation solely by following particular kinetic pathways. That is, just like silicon computation, these systems are intentionally designed to run contrary to the natural thermodynamic driving forces of the system. The thermodynamic binding networks (TBN) model is a relatively new model that is particularly well-equipped to investigate this dichotomy between kinetics and thermodynamics. The kinetic TBN model uses reconfiguration energy barriers to inform kinetic pathways. This work shows that deciding if two TBN configurations have a barrier-1 pathway between them is PSPACE-complete. This result comes via a reduction from nondeterministic constraint logic (NCL)

    Algorithmic Assembly of Nanoscale Structures

    Get PDF
    The development of nanotechnology has become one of the most significant endeavors of our time. A natural objective of this field is discovering how to engineer nanoscale structures. Limitations of current top-down techniques inspire investigation into bottom-up approaches to reach this objective. A fundamental precondition for a bottom-up approach is the ability to control the behavior of nanoscale particles. Many abstract representations have been developed to model systems of particles and to research methods for controlling their behavior. This thesis develops theories on two such approaches for building complex structures: the self-assembly of simple particles, and the use of simple robot swarms. The concepts for these two approaches are straightforward. Self-assembly is the process by which simple particles, following the rules of some behavior-governing system, naturally coalesce into a more complex form. The other method of bottom-up assembly involves controlling nanoscale particles through explicit directions and assembling them into a desired form. Regarding the self-assembly of nanoscale structures, we present two construction methods in a variant of a popular theoretical model known as the 2-Handed Tile Self-Assembly Model. The first technique achieves shape construction at only a constant scale factor, while the second result uses only a constant number of unique particle types. Regarding the use of robot swarms for construction, we first develop a novel technique for reconfiguring a swarm of globally-controlled robots into a desired shape even when the robots can only move maximally in a commanded direction. We then expand on this work by formally defining an entire hierarchy of shapes which can be built in this manner and we provide a technique for doing so

    Molecular Machines from Topological Linkages

    Get PDF
    Life is built upon amazingly sophisticated molecular machines whose behavior combines mechanical and chemical action. Engineering of similarly complex nanoscale devices from first principles remains an as yet unrealized goal of bioengineering. In this paper we formalize a simple model of mechanical motion (mechanical linkages) combined with chemical bonding. The model has a natural implementation using DNA with double-stranded rigid links, and single-stranded flexible joints and binding sites. Surprisingly, we show that much of the complex behavior is preserved in an idealized topological model which considers solely the graph connectivity of the linkages. We show a number of artifacts including Boolean logic, catalysts, a fueled motor, and chemo-mechanical coupling, all of which can be understood and reasoned about in the topological model. The variety of achieved behaviors supports the use of topological chemical linkages in understanding and engineering complex molecular behaviors

    Optimal Information Encoding in Chemical Reaction Networks

    Get PDF
    Discrete chemical reaction networks formalize the interactions of molecular species in a well-mixed solution as stochastic events. Given their basic mathematical and physical role, the computational power of chemical reaction networks has been widely studied in the molecular programming and distributed computing communities. While for Turing-universal systems there is a universal measure of optimal information encoding based on Kolmogorov complexity, chemical reaction networks are not Turing universal unless error and unbounded molecular counts are permitted. Nonetheless, here we show that the optimal number of reactions to generate a specific count x ? ? with probability 1 is asymptotically equal to a "space-aware" version of the Kolmogorov complexity of x, defined as K?s(x) = min_p {|p|/log|p| + log(space(?(p))) : ?(p) = x}, where p is a program for universal Turing machine ?. This version of Kolmogorov complexity incorporates not just the length of the shortest program for generating x, but also the space usage of that program. Probability 1 computation is captured by the standard notion of stable computation from distributed computing, but we limit our consideration to chemical reaction networks obeying a stronger constraint: they "know when they are done" in the sense that they produce a special species to indicate completion. As part of our results, we develop a module for encoding and unpacking any b bits of information via O(b/log{b}) reactions, which is information-theoretically optimal for incompressible information. Our work provides one answer to the question of how succinctly chemical self-organization can be encoded - in the sense of generating precise molecular counts of species as the desired state

    Self-Assembly of Any Shape with Constant Tile Types using High Temperature

    Get PDF
    Inspired by nature and motivated by a lack of top-down tools for precise nanoscale manufacture, self-assembly is a bottom-up process where simple, unorganized components autonomously combine to form larger more complex structures. Such systems hide rich algorithmic properties - notably, Turing universality - and a self-assembly system can be seen as both the object to be manufactured as well as the machine controlling the manufacturing process. Thus, a benchmark problem in self-assembly is the unique assembly of shapes: to design a set of simple agents which, based on aggregation rules and random movement, self-assemble into a particular shape and nothing else. We use a popular model of self-assembly, the 2-handed or hierarchical tile assembly model, and allow the existence of repulsive forces, which is a well-studied variant. The technique utilizes a finely-tuned temperature (the minimum required affinity required for aggregation of separate complexes). We show that calibrating the temperature and the strength of the aggregation between the tiles, one can encode the shape to be assembled without increasing the number of distinct tile types. Precisely, we show one tile set for which the following holds: for any finite connected shape S, there exists a setting of binding strengths between tiles and a temperature under which the system uniquely assembles S at some scale factor. Our tile system only uses one repulsive glue type and the system is growth-only (it produces no unstable assemblies). The best previous unique shape assembly results in tile assembly models use O(K(S)/(log K(S))) distinct tile types, where K(S) is the Kolmogorov (descriptional) complexity of the shape S

    Signal Passing Self-Assembly Simulates Tile Automata

    Get PDF
    The natural process of self-assembly has been studied through various abstract models due to the abundant applications that benefit from self-assembly. Many of these different models emerged in an effort to capture and understand the fundamental properties of different physical systems and the mechanisms by which assembly may occur. A newly proposed model, known as Tile Automata, offers an abstract toolkit to analyze and compare the algorithmic properties of different self-assembly systems. In this paper, we show that for every Tile Automata system, there exists a Signal-passing Tile Assembly system that can simulate it. Finally, we connect our result with a recent discovery showing that Tile Automata can simulate Amoebot programmable matter systems, thus showing that the Signal-passing Tile Assembly can simulate any Amoebot system

    Covert Computation in Self-Assembled Circuits

    Get PDF
    Traditionally, computation within self-assembly models is hard to conceal because the self-assembly process generates a crystalline assembly whose computational history is inherently part of the structure itself. With no way to remove information from the computation, this computational model offers a unique problem: how can computational input and computation be hidden while still computing and reporting the final output? Designing such systems is inherently motivated by privacy concerns in biomedical computing and applications in cryptography. In this paper we propose the problem of performing "covert computation" within tile self-assembly that seeks to design self-assembly systems that "conceal" both the input and computational history of performed computations. We achieve these results within the growth-only restricted abstract tile assembly model (aTAM) with positive and negative interactions. We show that general-case covert computation is possible by implementing a set of basic covert logic gates capable of simulating any circuit (functionally complete). To further motivate the study of covert computation, we apply our new framework to resolve an outstanding complexity question; we use our covert circuitry to show that the unique assembly verification problem within the growth-only aTAM with negative interactions is coNP-complete

    Harvesting Brownian Motion: Zero Energy Computational Sampling

    Full text link
    The key factor currently limiting the advancement of computational power of electronic computation is no longer the manufacturing density and speed of components, but rather their high energy consumption. While it has been widely argued that reversible computation can escape the fundamental Landauer limit of kBTln(2)k_B T\ln(2) Joules per irreversible computational step, there is disagreement around whether indefinitely reusable computation can be achieved without energy dissipation. Here we focus on the relatively simpler context of sampling problems, which take no input, so avoids modeling the energy costs of the observer perturbing the machine to change its input. Given an algorithm AA for generating samples from a distribution, we desire a device that can perpetually generate samples from that distribution driven entirely by Brownian motion. We show that such a device can efficiently execute algorithm AA in the sense that we must wait only O(time(A)2)O(\text{time}(A)^2) between samples. We consider two output models: Las Vegas, which samples from the exact probability distribution every 44 tries in expectation, and Monte Carlo, in which every try succeeds but the distribution is only approximated. We base our model on continuous-time random walks over the state space graph of a general computational machine, with a space-bounded Turing machine as one instantiation. The problem of sampling a computationally complex probability distribution with no energy dissipation informs our understanding of the energy requirements of computation, and may lead to more energy efficient randomized algorithms.Comment: 20 pages, 6 figures, submitted to ITCS 202

    Hardness of Reconfiguring Robot Swarms with Uniform External Control in Limited Directions

    Get PDF
    Motivated by advances is nanoscale applications and simplistic robot agents, we look at problems based on using a global signal to move all agents when given a limited number of directional signals and immovable geometry. We study a model where unit square particles move within a 2D grid based on uniform external forces. Movement is based on a sequence of uniform commands which cause all particles to move 1 step in a specific direction. The 2D grid board additionally contains \blocked spaces which prevent particles from entry. Within this model, we investigate the complexity of deciding 1) whether a target location on the board can be occupied (by any) particle (occupancy problem), 2) whether a specific particle can be relocated to another specific position in the board (relocation problem), and 3) whether a board configuration can be transformed into another configuration (reconfiguration problem). We prove that while occupancy is solvable in polynomial time, the relocation and reconfiguration problems are both NP-Complete even when restricted to only 2 or 3 movement directions. We further define a hierarchy of board geometries and show that this hardness holds for even very restricted classes of board geometry

    Building Patterned Shapes in Robot Swarms with Uniform Control Signals

    Get PDF
    This paper investigates a restricted version of robot motion planning, in which particles on a board uniformly respond to global signals that cause them to move one unit distance in a particular direction. We look at the problem of assembling patterns within this model. We first derive upper and lower bounds on the worst-case number of steps needed to reconfigure a general purpose board into a target pattern. We then show that the construction of k-colored patterns of size-n requires Ω(n log k) steps in general, and Ω(n log k + √ k) steps if the constructed shape must always be placed in a designated output location. We then design algorithms to approach these lower bounds: We show how to construct k-colored 1 × n lines in O(n log k + k) steps with unique output locations. For general colored shapes within a w×h bounding box, we achieve O(wh log k+hk) steps
    corecore